Denoising sparse images from GRAPPA using the nullspace method.
نویسندگان
چکیده
To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with generalized autocalibrating partially parallel acquisitions (GRAPPA) alone, the DEnoising of Sparse Images from GRAPPA using the Nullspace method is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from uniformly undersampled k-space data using DEnoising of Sparse Images from GRAPPA using the Nullspace method are compared against reconstructions using existing methods in terms of difference images (a qualitative measure), peak-signal-to-noise ratio, and noise amplification (g-factors) as measured using the pseudo-multiple replica method. Effects of smoothing, including contrast loss, are studied in synthetic phantom data. In the experiments presented, the contrast loss and spatial resolution are competitive with existing methods. Results for several brain images demonstrate significant improvements over GRAPPA at high acceleration factors in denoising performance with limited blurring or smoothing artifacts. In addition, the measured g-factors suggest that DEnoising of Sparse Images from GRAPPA using the Nullspace method mitigates noise amplification better than both GRAPPA and L1 iterative self-consistent parallel imaging reconstruction (the latter limited here by uniform undersampling).
منابع مشابه
Denoising Sparse Images from GRAPPA using the Nullspace Method (DESIGN)
To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with GRAPPA alone, the Denoising of Sparse Images from GRAPPA using the Nullspace method (DESIGN) is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from unifo...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملSpRING: Sparse Reconstruction of Images using the Nullspace method and GRAPPA
D. S. Weller, J. R. Polimeni, L. Grady, L. L. Wald, E. Adalsteinsson, and V. Goyal EECS, Massachusetts Institute of Technology, Cambridge, MA, United States, A. A. Martinos Center, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States, Dept. of Radiology, Harvard Medical School, Boston, MA, United States, Dept. of Image Analytics and Informatics, Siemens Corporate R...
متن کاملMagnetic Resonance in Medicine 71:1760–1770 (2014) Monte Carlo SURE-Based Parameter Selection for Parallel Magnetic Resonance Imaging Reconstruction
Purpose: Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein’s unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods th...
متن کاملMonte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.
PURPOSE Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 68 4 شماره
صفحات -
تاریخ انتشار 2012